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ABSTRACT 
 

The development of a harsh environment ammonia slip sensor based on tunable diode laser absorption spectroscopy is 

presented. A hybrid optical sensor design, through combination of wavelength modulation spectroscopy (WMS) and 

alignment control, is proposed as an approach towards reliable in-situ measurements in misalignment prone harsh 

environments. 1531.59 nm, 1553.4 nm and 1555.56 nm are suggested as possible absorption lines for trace ammonia 

measurement (<1ppm at 10m path length at 500K) in gas turbine exhaust conditions. Design and performance of the 

alignment control system are presented in detail. Effect of misalignment related measurement degradation is investigated 

and significant improvement in measurement fidelity is demonstrated through the use of the hybrid optical sensor design.     

 

Keywords: Tunable diode laser, wavelength modulation spectroscopy, harsh environment, ammonia slip, alignment  

 

1. INTRODUCTION 
 

In this past decade, industrial sectors of power generation and oil & gas, have seen a steady increase in the demand for 

lower costs, fuel savings, better efficiency, and longer asset life. As a result, higher reliability, optimized performance, 

and advanced analytics have become the key drivers in these sectors. Intelligent machines with fast & reliable online 

sensing and controls, in combination with advanced analytics, are leading to a profound transformation of the global 

industrial sector. Many a times, true performance enhancement requires measurement of machine parameters in harsh 

environments (high pressures or temperatures or both). Therefore, to support the development of advanced analytics and 

to augment the industrial assets with digital intelligence, harsh environment sensors are going to be increasingly 

important in the times to come1. 

 

Harsh environment sensors based on optical techniques offer some key advantages over conventional techniques, such as 

their speed of response, in-situ capability, ease of deployment, and their repeatability/reliability. A major application of 

optical sensors in the industrial space is gas monitoring, sensing, and analysis through techniques such as ultraviolet 

absorption spectroscopy (UV), non-dispersive infrared (NDIR), Fourier Transfer Infrared (FTIR) and Photo-acoustic 

Spectroscopy (PAS) 2. All these techniques are fast, reliable, and involve minimal maintenance.  For harsh environment 

applications, such as O&G and energy sectors, these techniques typically require gas sampling and conditioning to bring 

the harsh environment sample to an analyzable state or location. This can often involve undesirable delay in the 

measurement and unwanted maintenance of the sampling system3. Therefore, for control and optimization applications 

where response time, sensitivity and selectivity are the key requirements, laser spectroscopy techniques like Tunable 

Diode Laser Absorption Spectroscopy (TDLAS) offer real value 4, 5. TDLAS, when implemented in line-of-sight 6, 7 or 

stand-off configuration 8, can offer true in-situ measurement capability in harsh environments with high temperatures or 

pressures. A TDLAS instrument can make reliable measurements through one or more transmitting windows while being 

completely decoupled from the harsh environment. In this paper, we present a system based on TDLAS as an effective 

and reliable tool to conduct real-time, highly selective, in-situ trace measurements of ammonia slip for power plant 

control applications. We also present the implementation challenges, particularly maintaining alignment, and present 

possible solutions to make the system perform in harsh industrial conditions. 

 

2. THE NH3 SLIP PROBLEM 
 

Nitrogen oxides (NOx) emissions from gas turbines are strictly regulated by environmental agencies, like the EPA in the 

United States. A selective catalytic reduction approach (SCR) is often employed downstream of the engine exhaust to 

decrease the NOx concentrations in the exhaust gases before they are released into the atmosphere through the stack 9. In 

the SCR, ammonia (NH3) is injected to cause chemical reactions where NOx is reduced to N2 and H2O as shown in figure 
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WMS approach was discussed to be advantageous towards tackling beam steering and window clogging. Finally, design 

and lab performance details of the misalignment control system were presented to demonstrate the value of an alignment 

control system for harsh environment applications.  
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