

We focus on power.

Revision 0.98

18.12.2012

page 1 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

General	Droduc	+ Infc	ormation

Product	Application
780 nm DFB Laser with hermetic Butterfly Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
PM Fiber with angle-polished Connector	Rb Spectroscopy (Variant0005)
High-reliable fully Space-qualified Package	

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-40		85
Operational Temperature at Laser Chip	T_{LD}	°C	0		50
Forward Current	I _F	mA			160
Reverse Voltage	V_R	V			2
Output Power	P _{opt}	mW			50
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	-20		65
Operational Temperature at Laser Chip	T_{LD}	°C	5		45
Forward Current	I _F	mA			140
Output Power	P _{opt}	mW	4		40

Measurement Conditions / Comments
measured by integrated Thermistor
£l
ex fiber

Characteristics at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	779	780	781
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ I _F = 140 mA	P_{opt}	mW	40		

Measurement Conditions / Comments
see images on page 4
$P_{opt} = 40 \text{ mW}$
T _{LD} = 25° C

We focus on power.

Revision 0.98

18.12.2012

page 2 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

Characteristics at Begin Of Life	cont'd

Parameter	Symbol	Unit	min	typ	max
Slope Efficiency	S	W/A	0.15	0.50	0.80
Threshold Current	I _{th}	mA			70
Sidemode Supression Ratio	SMSR	dB	30	45	
Mode-hop free Operating Range (SMSR $>$ 30 d	B)				
Variant 0	T_{LD}	° C	24	25	26
	P_{opt}	mW	36		40
Variant 1	T_{LD}	° C	24	25	26
	P_{opt}	mW	4		40
Variant 2	T_{LD}	° C	15		45
	P_{opt}	mW	4		40
Variant 5	λ_{C}	nm		780.24	
	P_{opt}	mW	36		40
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments
T _{LD} = 25° C
$T_{LD} = 25^{\circ} C$
see below
see order code scheme on p. 4

wavelength reached	I within $T_{LD} = 5$ ° and 45° C
$P_{opt} = 40 \text{ mW};$	$T_{LD} = 25^{\circ} C$

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA / mW	1		20
Reverse Voltage Monitor Diode	$U_{R\ MD}$	V	3		5

Measurement Conditions / Comments
$U_R = 5 V$, target values

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments				
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 40 \text{ mW},$	$\Delta T = I T_{case} - T_{LD} I$			

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3892	

Measurement Conditions / Comments

We focus on power.

Revision 0.98

18.12.2012

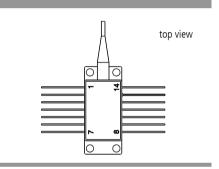
page 3 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

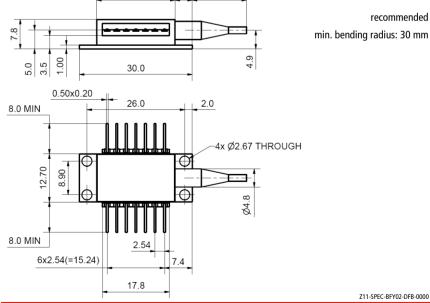
Fiber and Connector Type

PM Fiber	900 / 125 / 5.5 μ m, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector different variants available	
	FC/APC (narrow key / 2mm)
	► SC/APC
	• other types on request

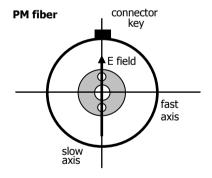

Measurement Conditions / Comments

see order code scheme

Package Pinout


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected

14.4



Package Drawings

20.8

recommended min. bending radius: 30 mm

slow axis of the PM fiber aligned to connector key

hermetically sealed Package:

Leak Rate $< 5 \cdot 10^{-8}$ atm.cc./s acc. MIL-STD-883E

@ All rights reserved by eagleyard Photonics GmbH. This preliminary data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

We focus on power.

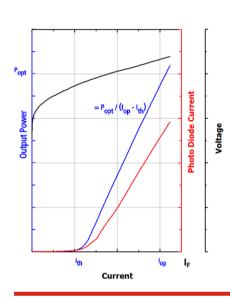
Revision 0.98

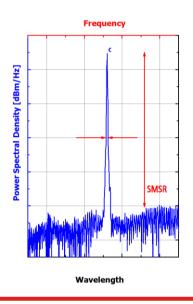
18.12.2012

page 4 from 5

DISTRIBUTED FEEDBACK LASER

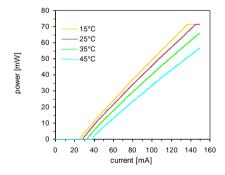
GaAs Semiconductor Laser Diode with integrated grating structure

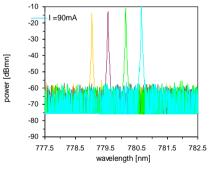




Typical Measurement Results

Output Power vs. Current


Spectra at Specified Optical Output Power



Output Power vs. Current over temperature

Spectra at Specified Optical Output Power over temperature

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

We focus on power.

Revision 0.98

18.12.2012

page 5 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

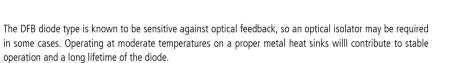
Order Code Scheme

Connector	

FC/APC (narrow key / 2mm)

SC/APC

other connector or fiber types upon request


EYP-DFB-0780-00040-1500-BFY02-	0 x 0 x
	0
	1
	0
	1
	2
	5

Mode-hop free Operating Range (Minimum Side Mode Suppression Ratio > 30 dB)

P _{opt} = 36 40 mW;	$T_{LD} = 25^{\circ}$	(Variant 0)
$P_{opt} = 4 \dots 40 \text{ mW};$	$T_{LD} = 25^{\circ}$	(Variant 1)
$P_{opt} = 4 \dots 40 \text{ mW};$	$T_{LD} = 15^{\circ} \dots 45^{\circ} C$	(Variant 2)
$P_{opt} = 36 \dots 40 \text{ mW};$	$\lambda_c = 780.24 \text{ nm}$	(Variant 5)

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

